Extensions 1→N→G→Q→1 with N=S3xC2xC6 and Q=C22

Direct product G=NxQ with N=S3xC2xC6 and Q=C22
dρLabelID
S3xC23xC696S3xC2^3xC6288,1043

Semidirect products G=N:Q with N=S3xC2xC6 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xC2xC6):1C22 = D6:4D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6):1C2^2288,570
(S3xC2xC6):2C22 = C62:4D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6):2C2^2288,624
(S3xC2xC6):3C22 = C62:8D4φ: C22/C1C22 ⊆ Out S3xC2xC624(S3xC2xC6):3C2^2288,629
(S3xC2xC6):4C22 = C3xD6:D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6):4C2^2288,653
(S3xC2xC6):5C22 = C3xC24:4S3φ: C22/C1C22 ⊆ Out S3xC2xC624(S3xC2xC6):5C2^2288,724
(S3xC2xC6):6C22 = C2xS3xD12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6):6C2^2288,951
(S3xC2xC6):7C22 = C2xD6:D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6):7C2^2288,952
(S3xC2xC6):8C22 = D12:24D6φ: C22/C1C22 ⊆ Out S3xC2xC6484(S3xC2xC6):8C2^2288,955
(S3xC2xC6):9C22 = S32xD4φ: C22/C1C22 ⊆ Out S3xC2xC6248+(S3xC2xC6):9C2^2288,958
(S3xC2xC6):10C22 = D12:12D6φ: C22/C1C22 ⊆ Out S3xC2xC6488-(S3xC2xC6):10C2^2288,961
(S3xC2xC6):11C22 = D12:13D6φ: C22/C1C22 ⊆ Out S3xC2xC6248+(S3xC2xC6):11C2^2288,962
(S3xC2xC6):12C22 = C2xDic3:D6φ: C22/C1C22 ⊆ Out S3xC2xC624(S3xC2xC6):12C2^2288,977
(S3xC2xC6):13C22 = C32:2+ 1+4φ: C22/C1C22 ⊆ Out S3xC2xC6244(S3xC2xC6):13C2^2288,978
(S3xC2xC6):14C22 = C3xD4:6D6φ: C22/C1C22 ⊆ Out S3xC2xC6244(S3xC2xC6):14C2^2288,994
(S3xC2xC6):15C22 = C3xD4oD12φ: C22/C1C22 ⊆ Out S3xC2xC6484(S3xC2xC6):15C2^2288,999
(S3xC2xC6):16C22 = C22xD6:S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6):16C2^2288,973
(S3xC2xC6):17C22 = C22xC3:D12φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6):17C2^2288,974
(S3xC2xC6):18C22 = C2xS3xC3:D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6):18C2^2288,976
(S3xC2xC6):19C22 = C2xC6xD12φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6):19C2^2288,990
(S3xC2xC6):20C22 = S3xC6xD4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6):20C2^2288,992
(S3xC2xC6):21C22 = C2xC6xC3:D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6):21C2^2288,1002
(S3xC2xC6):22C22 = S32xC23φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6):22C2^2288,1040

Non-split extensions G=N.Q with N=S3xC2xC6 and Q=C22
extensionφ:Q→Out NdρLabelID
(S3xC2xC6).1C22 = Dic3.D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).1C2^2288,500
(S3xC2xC6).2C22 = C62.23C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).2C2^2288,501
(S3xC2xC6).3C22 = C62.24C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).3C2^2288,502
(S3xC2xC6).4C22 = C62.28C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).4C2^2288,506
(S3xC2xC6).5C22 = C62.29C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).5C2^2288,507
(S3xC2xC6).6C22 = C12.27D12φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).6C2^2288,508
(S3xC2xC6).7C22 = C62.31C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).7C2^2288,509
(S3xC2xC6).8C22 = C62.32C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).8C2^2288,510
(S3xC2xC6).9C22 = C62.33C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).9C2^2288,511
(S3xC2xC6).10C22 = C62.47C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).10C2^2288,525
(S3xC2xC6).11C22 = C62.48C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).11C2^2288,526
(S3xC2xC6).12C22 = C62.49C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).12C2^2288,527
(S3xC2xC6).13C22 = Dic3:4D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).13C2^2288,528
(S3xC2xC6).14C22 = C62.51C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).14C2^2288,529
(S3xC2xC6).15C22 = C62.54C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).15C2^2288,532
(S3xC2xC6).16C22 = C62.55C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).16C2^2288,533
(S3xC2xC6).17C22 = Dic3:D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).17C2^2288,534
(S3xC2xC6).18C22 = D6:1Dic6φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).18C2^2288,535
(S3xC2xC6).19C22 = D6.D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).19C2^2288,538
(S3xC2xC6).20C22 = D6.9D12φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).20C2^2288,539
(S3xC2xC6).21C22 = Dic3xD12φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).21C2^2288,540
(S3xC2xC6).22C22 = D6:2Dic6φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).22C2^2288,541
(S3xC2xC6).23C22 = D6:3Dic6φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).23C2^2288,544
(S3xC2xC6).24C22 = D12:Dic3φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).24C2^2288,546
(S3xC2xC6).25C22 = D6:4Dic6φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).25C2^2288,547
(S3xC2xC6).26C22 = C62.72C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).26C2^2288,550
(S3xC2xC6).27C22 = D6:D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).27C2^2288,554
(S3xC2xC6).28C22 = C62.77C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).28C2^2288,555
(S3xC2xC6).29C22 = D6:2D12φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).29C2^2288,556
(S3xC2xC6).30C22 = Dic3:3D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).30C2^2288,558
(S3xC2xC6).31C22 = C12:D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).31C2^2288,559
(S3xC2xC6).32C22 = C62.82C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).32C2^2288,560
(S3xC2xC6).33C22 = C62.83C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).33C2^2288,561
(S3xC2xC6).34C22 = C62.84C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).34C2^2288,562
(S3xC2xC6).35C22 = C62.85C23φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).35C2^2288,563
(S3xC2xC6).36C22 = C12:2D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).36C2^2288,564
(S3xC2xC6).37C22 = C62.91C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).37C2^2288,569
(S3xC2xC6).38C22 = D6:5D12φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).38C2^2288,571
(S3xC2xC6).39C22 = C62.100C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).39C2^2288,606
(S3xC2xC6).40C22 = C62.101C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).40C2^2288,607
(S3xC2xC6).41C22 = C62.56D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).41C2^2288,609
(S3xC2xC6).42C22 = C62.57D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).42C2^2288,610
(S3xC2xC6).43C22 = C62.111C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).43C2^2288,617
(S3xC2xC6).44C22 = C62.112C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).44C2^2288,618
(S3xC2xC6).45C22 = C62.113C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).45C2^2288,619
(S3xC2xC6).46C22 = Dic3xC3:D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).46C2^2288,620
(S3xC2xC6).47C22 = C62.115C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).47C2^2288,621
(S3xC2xC6).48C22 = C62:6D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).48C2^2288,626
(S3xC2xC6).49C22 = C62.121C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).49C2^2288,627
(S3xC2xC6).50C22 = C62:7D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).50C2^2288,628
(S3xC2xC6).51C22 = C62.125C23φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).51C2^2288,631
(S3xC2xC6).52C22 = C3xC4:D12φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).52C2^2288,645
(S3xC2xC6).53C22 = C3xC42:7S3φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).53C2^2288,646
(S3xC2xC6).54C22 = C3xC42:3S3φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).54C2^2288,647
(S3xC2xC6).55C22 = C3xC23.11D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).55C2^2288,656
(S3xC2xC6).56C22 = C3xC23.21D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).56C2^2288,657
(S3xC2xC6).57C22 = C3xC12:D4φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).57C2^2288,666
(S3xC2xC6).58C22 = C3xC4:C4:S3φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).58C2^2288,669
(S3xC2xC6).59C22 = C3xC23.28D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).59C2^2288,700
(S3xC2xC6).60C22 = C3xC12:7D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).60C2^2288,701
(S3xC2xC6).61C22 = C3xC23.14D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).61C2^2288,710
(S3xC2xC6).62C22 = C3xC12:3D4φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).62C2^2288,711
(S3xC2xC6).63C22 = C3xC12.23D4φ: C22/C1C22 ⊆ Out S3xC2xC696(S3xC2xC6).63C2^2288,718
(S3xC2xC6).64C22 = C2xD12:S3φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).64C2^2288,944
(S3xC2xC6).65C22 = S3xD4:2S3φ: C22/C1C22 ⊆ Out S3xC2xC6488-(S3xC2xC6).65C2^2288,959
(S3xC2xC6).66C22 = C2xD6.3D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).66C2^2288,970
(S3xC2xC6).67C22 = C2xD6.4D6φ: C22/C1C22 ⊆ Out S3xC2xC648(S3xC2xC6).67C2^2288,971
(S3xC2xC6).68C22 = C62.11C23φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).68C2^2288,489
(S3xC2xC6).69C22 = C62.20C23φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).69C2^2288,498
(S3xC2xC6).70C22 = D6:Dic6φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).70C2^2288,499
(S3xC2xC6).71C22 = C62.25C23φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).71C2^2288,503
(S3xC2xC6).72C22 = D6:6Dic6φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).72C2^2288,504
(S3xC2xC6).73C22 = D6:7Dic6φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).73C2^2288,505
(S3xC2xC6).74C22 = C4xS3xDic3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).74C2^2288,523
(S3xC2xC6).75C22 = S3xDic3:C4φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).75C2^2288,524
(S3xC2xC6).76C22 = S3xC4:Dic3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).76C2^2288,537
(S3xC2xC6).77C22 = C4xD6:S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).77C2^2288,549
(S3xC2xC6).78C22 = C4xC3:D12φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).78C2^2288,551
(S3xC2xC6).79C22 = C62.74C23φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).79C2^2288,552
(S3xC2xC6).80C22 = C62.75C23φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).80C2^2288,553
(S3xC2xC6).81C22 = C12:7D12φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).81C2^2288,557
(S3xC2xC6).82C22 = S3xD6:C4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).82C2^2288,568
(S3xC2xC6).83C22 = C2xD6:Dic3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).83C2^2288,608
(S3xC2xC6).84C22 = S3xC6.D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).84C2^2288,616
(S3xC2xC6).85C22 = C62:5D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).85C2^2288,625
(S3xC2xC6).86C22 = C3xC42:2S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).86C2^2288,643
(S3xC2xC6).87C22 = C12xD12φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).87C2^2288,644
(S3xC2xC6).88C22 = C3xS3xC22:C4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).88C2^2288,651
(S3xC2xC6).89C22 = C3xDic3:4D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).89C2^2288,652
(S3xC2xC6).90C22 = C3xC23.9D6φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).90C2^2288,654
(S3xC2xC6).91C22 = C3xDic3:D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).91C2^2288,655
(S3xC2xC6).92C22 = C3xC4:C4:7S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).92C2^2288,663
(S3xC2xC6).93C22 = C3xDic3:5D4φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).93C2^2288,664
(S3xC2xC6).94C22 = C3xD6.D4φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).94C2^2288,665
(S3xC2xC6).95C22 = C3xD6:Q8φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).95C2^2288,667
(S3xC2xC6).96C22 = C3xC4.D12φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).96C2^2288,668
(S3xC2xC6).97C22 = C6xD6:C4φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).97C2^2288,698
(S3xC2xC6).98C22 = C12xC3:D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).98C2^2288,699
(S3xC2xC6).99C22 = C3xC23:2D6φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).99C2^2288,708
(S3xC2xC6).100C22 = C3xD6:3D4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).100C2^2288,709
(S3xC2xC6).101C22 = C3xD6:3Q8φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).101C2^2288,717
(S3xC2xC6).102C22 = C2xS3xDic6φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).102C2^2288,942
(S3xC2xC6).103C22 = C2xD12:5S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).103C2^2288,943
(S3xC2xC6).104C22 = C2xD6.D6φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).104C2^2288,948
(S3xC2xC6).105C22 = C2xD6.6D6φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).105C2^2288,949
(S3xC2xC6).106C22 = S32xC2xC4φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).106C2^2288,950
(S3xC2xC6).107C22 = S3xC4oD12φ: C22/C2C2 ⊆ Out S3xC2xC6484(S3xC2xC6).107C2^2288,953
(S3xC2xC6).108C22 = C22xS3xDic3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).108C2^2288,969
(S3xC2xC6).109C22 = C6xC4oD12φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).109C2^2288,991
(S3xC2xC6).110C22 = C6xD4:2S3φ: C22/C2C2 ⊆ Out S3xC2xC648(S3xC2xC6).110C2^2288,993
(S3xC2xC6).111C22 = C6xQ8:3S3φ: C22/C2C2 ⊆ Out S3xC2xC696(S3xC2xC6).111C2^2288,996
(S3xC2xC6).112C22 = C3xS3xC4oD4φ: C22/C2C2 ⊆ Out S3xC2xC6484(S3xC2xC6).112C2^2288,998
(S3xC2xC6).113C22 = S3xC4xC12φ: trivial image96(S3xC2xC6).113C2^2288,642
(S3xC2xC6).114C22 = C3xS3xC4:C4φ: trivial image96(S3xC2xC6).114C2^2288,662
(S3xC2xC6).115C22 = S3xC22xC12φ: trivial image96(S3xC2xC6).115C2^2288,989
(S3xC2xC6).116C22 = S3xC6xQ8φ: trivial image96(S3xC2xC6).116C2^2288,995

׿
x
:
Z
F
o
wr
Q
<